58彩票|58彩票
58彩票2023-01-31 16:05

58彩票

为数字经济发展添能蓄力 加速千行百业羽化创新——浪潮云分布式云ICP 成果回顾与展望******

  作者:尹萍

  刚刚过去的 2022年,在经济下行压力加大的情况下,数字经济作为国民经济的“加速器”作用凸显,成为经济恢复向好的关键力量。

  国际市场研究机构Gartner发布的2023年十大战略技术趋势预测显示,到2027年,超过50%的企业将使用行业云平台来加速他们的业务项目。在宏观经济增长放缓、供应链短缺等诸多不稳定因素的影响下,国际数据机构IDC预测,未来5年国内云计算市场年复合增长率将在20%左右,到2025年,75%的组织将选择能够在跨云、边缘和专属环境中提供一致性应用部署体验的技术合作伙伴。

  羽化即为数字化过程,是物理世界和数字世界的链接或打通。云正成为拉通物理世界和数字世界实现羽化的新引擎。

为数字经济发展添能蓄力 加速千行百业羽化创新——浪潮云分布式云ICP 成果回顾与展望

  Gartner 2023年十大战略技术趋势

  2022年,浪潮集团旗下浪潮云深入践行“自信自强、守正创新,踔厉奋发、勇毅前行”的精神,持续加大新增长引擎投入。针对当前千行百业数字化转型面临的算力分布不均、数据要素治理、数字技能提升三大核心问题,浪潮云以新一代行业云MEP战略为指引,以用户需求为中心,通过分布式云、一体化大数据平台、安全运营三个核心要素加以解决,助力政企客户跨越横亘于前的“数字鸿沟”。

  2022年,浪潮云分布式云ICP(Inspur Cloud Platform)作为统一云服务平台底座,深耕分布式云、边缘计算、云原生等核心技术,通过中心云(ICP Central)、本地云(ICP Local)、边缘云(ICP Edge)三种部署形态,将算力服务输送至用户身边,为千行百业实现云上数字化创新、产业降本增效提供分布式算力技术保障。

  核心技术创新在路上, ICP产品序列持续充盈

  2022年,浪潮云分布式云ICP聚焦关注平台创新能力和技术能力突破,发布本地云ICP Local V3.6和边缘云ICP Edge V2.1,以足够宽阔、不断充盈的产品序列,全方位升级分布式云平台及服务。

为数字经济发展添能蓄力 加速千行百业羽化创新——浪潮云分布式云ICP 成果回顾与展望

  分布式云ICP产品系列

  产品序列多项发力,浪潮云分布式云ICP综合实力极大增强:在架构优化方面,优化云平台部署架构,支持单集群1000+以上节点部署规模,管理规模提升10倍以上,预计降低建设、运营维护成本10%;在平台性能方面,浪潮分布式云ICP ARM架构获SPEC Cloud测试全球第一名,刷新了综合性能、KMeans性能、平均实例配置时间三项世界纪录;在稳定性方面,新增基于网络判断的自动疏散技术和磁盘故障预测能力,持续提升平台及服务稳定性。

  行业探索落地在路上,分布式云让计算无处不在

  2022年,以浪潮云分布式云ICP为核心,浪潮云加速全国布局,通过7大核心云数据中心、113个区域云中心、481个分布式节点打造无处不在的算网体系,同时,依托浪潮云全球运行指挥中心OpsCenter实现云平台持续迭代和升级,超过2万个业务应用系统在浪潮云上稳定运行。

  在政务领域,浪潮云助力中国科协 “一云多芯”云服务平台,实现“中心云+本地云”异构资源的统一接入、统一管理、统一服务,通过提供一站式云原生应用运行环境,保障云原生应用云上开发和生命周期管理,支撑300+容器稳定运行;助力中国科协与全国学会、地方科协和基层组织,打造上下联动、纵横互通、共建共享的平台生态,支撑全国科技工作者实现服务质量提升。

为数字经济发展添能蓄力 加速千行百业羽化创新——浪潮云分布式云ICP 成果回顾与展望

  在行业领域,浪潮云依据城轨团标标准技术要求,建设“南通轨交云”统一一朵分布式云,实现多线路资源共享,统一地铁信息系统服务,为南通轨交“线网云”云化升级赋能;参与建设日照医保云,赋能其业务应用创新、数据开放共享,并助力项目荣获中国信通院《专有云平台成熟度能力》先进级认证。

  在边缘计算领域,浪潮云为临沂国土构建“1个中心云+9个边缘云”的分布式云平台,为国土空间数据分析、GIS建模处理等提供边缘侧近场算力服务。该项目在边缘计算、云边协同领域的分布式云创新实践,荣获云计算开源产业联盟2022年度“分布式云与云边协同最佳实践案例”奖项。

  载誉前行再出发,以口碑赢得认可

  2022年,浪潮云分布式云ICP积极参与国内外行业开放交流平台,以行业沟通、标准评测为抓手,以技术创新攻坚为核心,多项产品和服务以专业实力和用户口碑突破荣获行业权威认可,入选中国信息通信研究院软件供应链产品名录和中国电子工业标准化技术协会信息技术应用创新工作委员会图谱。

  同时,浪潮云分布式云ICP积极推进云计算行业标准体系建设,完成分布式云、专有云、边缘云等6项云计算标准编制,首批通过中国信通院《分布式云服务基础设施能力要求》、《专有云平台成熟度能力要求》、《分布式系统稳定性度量》标准测评认证。

  乘势而上,为数字经济发展添能蓄力

  2023年,如何向着新的奋斗目标再出发?浪潮云分布式云ICP将在新一代行业云MEP战略的指引下,持续深化分布式算力服务核心能力,加大技术研发创新投入:

  构建分布式算力服务方面,实现分布式云全局算力度量、建模、预测分析,助力行业应用实现云边端算力服务的最优化供给;强化云服务高可用方面,实现硬件故障预测和全栈云服务高可用,提升行业客户业务应用的SLA;丰富智算产品方面,提供面向深度学习、训练推理、科学计算等场景的计算型,以及面向渲染型的智算产品服务,为行业数字化和智能化提供多样算力服务;完善边缘产品体系方面,以轻量灵活的边缘算力为基座,丰富面向行业场景的产品应用和智能端产品,优化云边端一体化协同能力,助力行业客户实现云上应用创新。

  奋进2023年,浪潮云将继续发挥分布式云算力服务优势,为千行百业云上羽化保驾护航,共同奔赴更加数字化、智能化的未来。

  (作者系浪潮云分布式云ICP产品总监)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

58彩票地图